







## FP2 Inc

Jim Moulthrop, P.E. Executive Director Austin, TX





#### FP2 Inc.

- ✓ Industry supported trade association
- ✓ Major sponsors are NAPA, ISSA, AEMA, ARRA, Asphalt Institute, IGGA, Colas, MeadWestvaco, Western Emulsions
- ✓ Others supporters are contractors, material suppliers, equipment manufactures, polymer suppliers







#### FP2 Inc.

#### ✓ Priorities:

- Advocacy for preservation language in the SAFETEA-LU re-authorization
- Promotion of the benefits of pavement preservation
- Support research programs included in the FHWA System Preservation Roadmap
- Financially support the NCPP







## Acknowledgement

The National Center for Pavement Preservation



Michigan State University







#### **Pavement Preservation**

Slurry Seals or Microsurfacing are used to weatherproof and delay age hardening caused by oxidation, to maximize the life of existing pavements.

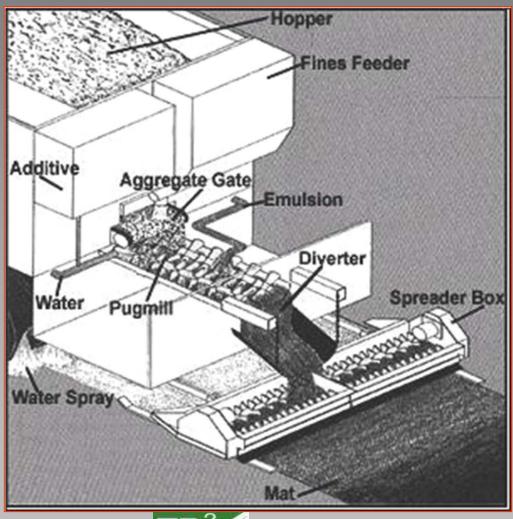






#### **Surface Correction**

# To restore desirable functional surface characteristics such as:


- ✓ Skid resistance
- ✓ Crack filling
- ✓ Weatherproofing
- ✓ Raveling
- ✓ Aesthetics and uniformity







# **Slurry Seals**









## History of Slurry Seals

- ✓ Developed in Germany early 1930's
- ✓ Mix of fine aggregate, binder, water
- ✓ Novel maintenance technique
- ✓ Marked the beginning of slurry seals
- ✓ Made more practical with improved emulsifiers and machinery in 1960's







## **Description of Slurry Seals**

- ✓ Mixture of asphalt emulsion, graded aggregates, mineral filler & water
- ✓ Placed on continuous basis
- ✓ Portland cement, lime, fly ash used
- ✓ Free flowing consistency
- ✓ Does not add structural capacity
- ✓ ISSA 105







## **Project Selection for Slurry Seals**

- ✓ Sound, well-drained bases, surfaces and shoulders
- √ Free of distresses, potholes, cracking
- ✓ Appropriate for:
  - Raveling, Oxidized Pavement w/ Hairline Cracks
- ✓ Not Appropriate for:
  - Cracking, Base Failures, Distressed HMA Layers







## **Project Selection for Slurry Seals**

| Applications           | Aggregate Type |    |     |
|------------------------|----------------|----|-----|
| Applications           | I              | II | III |
| Void Filling           | ×              | ×  |     |
| Wearing Course (ADT)   |                |    |     |
| < 100                  | ×              | ×  |     |
| 100 - 1,000            |                | ×  | ×   |
| 1,000 - 20,000         |                |    | ×   |
| Minor Shape Correction |                |    | ×   |







# Slurry Seal:

two primary applications

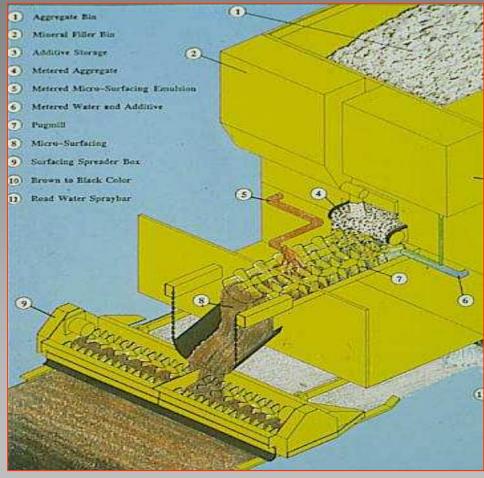
- 1. <u>Pavement Preservation</u> to prevent surface deterioration
- 2. <u>Corrective Maintenance</u> to renew surface characteristics







## **Local Streets**










# Microsurfacing









# History of Microsurfacing

- ✓ Developed in Germany late 1960's
- ✓ Thicker version of conventional slurry
- ✓ Applied in narrow courses for ruts
- ✓ Incorporated special polymers to promote stability in multi-layers
- ✓ Introduced in the U.S. in 1980's







## **Description of Microsurfacing**

"A designed mixture of polymer modified emulsified asphalt, mineral aggregate, mineral filler, water, or other additives, proportioned, mixed, and uniformly spread over a properly prepared surface."

- ✓ ISSA A-143
- ✓ State DOT Specifications
  - ✓ ASTM D-6372







#### **Project Selection for Microsurfacing**

- ✓ Sound and well-drained surfaces
- ✓ No distresses, potholes, and/or cracking
- ✓ Appropriate for:
  - Raveling, Oxidized Pavement, Rutting, Rough
     Pavements w/ Short Wavelengths
- ✓ Not Appropriate for:
  - Cracking, Base Failures, Distressed HMA Layers







## **Project Selection for Microsurfacing**

| Applications                                   | Aggregate Type |     |
|------------------------------------------------|----------------|-----|
| Applications                                   | II             | III |
| Void Filling                                   | X              |     |
| Wearing Course (ADT)                           |                |     |
| < 100                                          | X              |     |
| 100 - 1,000                                    | ×              | ×   |
| 1,000 - 20,000                                 | ×              | ×   |
| > 20,000                                       |                | ×   |
| Minor Shape Correction 0.4-0.8 inch (10-20 mm) | ×              | ×   |
| Rut-filling                                    | ×              | ×   |







## Microsurfacing Advantages

- ✓ Mix can be placed in thicker lifts while remaining stable
- ✓ Macrotexture of the mix remains
- ✓ Quick setting for traffic
- ✓ Enhanced durability







## Uses









# Uses










# Uses







## Comparisons

#### Slurry Seals

- ✓ May use polymers
- ▼ Thickness equal to largest stone
- ✓ Evaporative break
- Environmentallydependent curing
- ✓ Seals, restores surface texture, stops raveling

#### Microsurfacing

- ✓ Always use polymers
- ✓ Thickness is 2-3 largest stone size
- ✓ Chemical break
- ✓ Non-environment dependent curing
- ✓ Rut-filling, restores surface profile





#### **Expected Performance**

#### Slurry Seals

- ✓ Life Extension 3-5 years (good road)
- ✓ Longevity 4 to 7 years

#### Microsurfacing

- ✓ Life Extension 4-8 years (good road)
- ✓ Longevity 6 to 10 years
- ✓ Rut-filling performance depends on underlying pavement condition
- ✓ Traffic is not a limiting factor







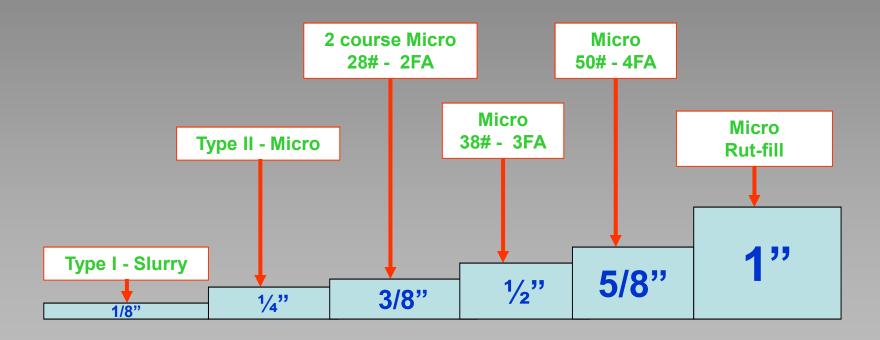
# Typical Life Extensions

| Treatment      | Pavement Condition |                  |                  |  |
|----------------|--------------------|------------------|------------------|--|
|                | Good<br>(PCI=80)   | Fair<br>(PCI=60) | Poor<br>(PCI=40) |  |
| Slurry Seals   | 3 - 5 yrs.         | 1 - 3 yrs.       | 0 - 1 yrs.       |  |
| Microsurfacing | 4 - 8 yrs.         | 3 - 5 yrs.       | 1 - 4 yrs.       |  |








# **Application Rates**

| Treatment       | Aggregate Type                                          |                                                           |                                                           |  |
|-----------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|
| rreumem         | I                                                       | II                                                        | III                                                       |  |
| Slurry Seals    | 8-12 lb/yd <sup>2</sup><br>(4.3-6.5 kg/m <sup>2</sup> ) | 12-20 lb/yd <sup>2</sup><br>(6.5-10.8 kg/m <sup>2</sup> ) | 18-30 lb/yd²<br>(9.8-16.3 kg/m²)                          |  |
| Micro-surfacing |                                                         | 10-20 lb/yd <sup>2</sup><br>(5.4-10.8 kg/m <sup>2</sup> ) | 15-30 lb/yd <sup>2</sup><br>(8.1-16.3 kg/m <sup>2</sup> ) |  |





# **Application Thickness**









## **Specifications**

#### Method Based

✓ Design, materials, methods, payment

#### Performance Based

- ✓ Define outcomes
- ✓ Immediate response safety problems
- √ Flexibility
- ✓ Risk shifted to contractor
- ✓ Partnership between agency/contractor







## Specifications (cont)

#### Warranties

- ✓ Description of work, definitions
- ✓ Initial acceptance terms
- ✓ Warranty bond description
- Rights and responsibilities of parties
- ✓ Evaluation method
- ✓ Requirements and conflict resolution
- √ Non-extension of contract
- ✓ Measurement and payment







## Responsibilities

#### Inspection

- ✓ Adherence to Specifications
- ✓ Document quantities
  - Placed versus planned
- ✓ Actual rate of spread
  - Too little or too much placement







## **Methods of Payment**

#### Slurry Seal

✓ Materials, equipment, cleaning labor, bond coat, mix placement

#### Microsurfacing

- ✓ Standard: paid by area or weight
- ✓ Rut-filling: paid by weight
- ✓ Materials, equipment, labor, cleaning, marker replacement, tack coats if required







## **Keys To Success**

- ✓ Site Selection
- ✓ Equipment Calibration
- ✓ Material Consistency
- ✓ Contractor Performance
- ✓ Project Inspection
- ✓ Information











